
Differentially Private Optimization for Smooth Nonconvex ERM
Changyu Gao and StephenWright

Summary

• We develop simple differentially private optimization algorithms that

move along directions of (expected) descent to find an approximate

second-order solution for nonconvex ERM.

• We use line search, mini-batching, and a two-phase strategy to im-

prove the speed and practicality of the algorithm.

• Numerical experiments demonstrate the effectiveness of our ap-

proaches, outperforming SOTA algorithm DPTR.

Preliminaries

• Privacy protection has become a central issue in machine learning algo-

rithms. Differential privacy provides a rigorous and popular framework

for quantifying privacy.

• ((ε, δ)-Differential Privacy): A randomized algorithm A is (ε, δ)-
differentially private (DP) if for all neighboring datasets D, D′ and
for all events S in the output space of A, the following holds

Pr (A(D) ∈ S) ≤ eε Pr
(
A(D′) ∈ S

)
+ δ.

There are other variants of DP. We also use ρ-zCDP in our paper.

• (εg, εH)-2S: A solution that satisfies approximate second-order solution

‖∇f (w)‖ ≤ εg, λmin

(
∇2f (w)

)
≥ −εH . (1)

• Gaussian Mechanism: We can achieve differential privacy by adding a

Gaussian noise to the output.

• Problem (DP-ERM): Find a (εg, εH)-2S of the ERM in Rd,

f (w) = 1
n

n∑
i=1

l (w, xi) . (2)

• We assume boundedness up to second order and Lipschitz Hessians.

Algorithm

We develop our based on a simple second-order algorithm [2]:

• When gradients are large, take a gradient step.

• When gradients are small, we check the Hessian. If there is a negative

direction, we take a negative curvature step. Otherwise, we are done.

We add noise to gradients and Hessians to achieve differential privacy.

However, the step sizes and noise parameters need to be chosen

carefully to ensure privacy and convergence at the same time.

Algorithm DP Optimization with Second-Order Guarantees

Given: iteration min decrease MIN_DEC, tolerances εg, εH , noise parameters σf , σg,

σH

Initialize w0 and sample z ∼ N (0, ∆2
fσ2

f)
Compute an upper bound of the required number of iterations as follows

T =
⌈

f (w0) + |z| − f

MIN_DEC

⌉
(3)

Choose σg and σH using T
for k = 0, 1, . . . , T − 1 do

Sample εk ∼ N
(
0, ∆2

gσ
2
gId

)
and compute the perturbed gradient g̃k = gk + εk

if ‖g̃k‖ > εg then

Choose γk,g and set wk+1 ← wk − γk,gg̃k . Gradient step

else

Sample Ek such that Ek is a d× d symmetric matrix in which each entry on

and above its diagonal is i.i.d. as N (0, ∆2
Hσ2

H)
Compute perturbed Hessian H̃k = Hk + Ek

Compute the minimum eigenvalue of H̃k and the corresponding eigenvector

(λ̃k, p̃k) satisfying ‖p̃k‖ = 1 and (p̃k)T g̃k ≤ 0
if λ̃k < −εH then

Choose γk,H > 0 and set wk+1 ← wk + γk,H p̃k . Negative curvature step

else

return wk

end if

end if

end for

Theorem (informal). Under proper choices of parameters, with

probability at least {(1− ζ/T)(1− C exp (−C1Cd))}T , the algorithm is

ρ-zCDP, and outputs a ((1 + c1)εg, (1 + c)εH)-2S, provided that n ≥ nmin,
where the asymptotic dependence of nmin on (εg, εH), ρ and d, is

nmin =
√

d
√

ρ
Õ
(

max
(

ε−2
g , ε−1

g ε−2
H , ε

−7/2
H

))
. (4)

Line search and other enhancements

Line search: Instead of using ”short steps”, we can use line search to

choose step sizes for a speedup. We use the sparse vector technique [1]

to do this without spending too much privacy budget.

Mini-batching: We can carefully choose the parameters to derive a

mini-batch version of the algorithm.

Two-phase strategy: Our choice of parameters is based on the

worst-case analysis. We can try more aggressive parameters and fall

back to conservative estimates if needed.

Eigenvalue computation without forming the full Hessian: We can use

the Lanczos method to find an approximation to the minimum

eigenvalue and eigenvector, in place of a direct eigenvalue computation.

Experiments

Setting: Covertype dataset, logistic loss with nonconvex regularizer. We

experiment under different levels of privacy budget measured by ε.

Covertype: finding a loose solution, (εg, εH) = (0.060, 0.245)

method
ε = 0.2 ε = 0.6 ε = 1.0

final loss runtime loss runtime loss runtime

TR 0.729± 0.028 10.1± 9.9 0.729± 0.026 8.3± 8.6 0.729± 0.026 9.5± 9.1
TR-B 0.729± 0.029 2.2± 2.0 0.728± 0.027 2.2± 2.4 0.729± 0.028 2.5± 2.4

OPT 0.581± 0.057 × 0.712± 0.018 0.6± 0.2 0.712± 0.017 0.5± 0.2
OPT-B 0.712± 0.018 3.1± 2.9 0.712± 0.018 3.2± 3.0 0.712± 0.018 2.9± 2.9
OPT-LS 0.577± 0.032 × 0.687± 0.028 0.4± 0.1 0.699± 0.018 0.4± 0.1

2OPT 0.626± 0.078 × 0.712± 0.017 0.6± 0.2 0.712± 0.018 0.6± 0.2
2OPT-B 0.712± 0.018 1.4± 0.3 0.712± 0.018 1.4± 0.4 0.712± 0.018 2.0± 1.7
2OPT-LS 0.699± 0.018 0.5± 0.2 0.699± 0.018 0.5± 0.2 0.699± 0.018 0.5± 0.2

Covertype: finding a tight solution: (εg, εH) = (0.030, 0.173)

method
ε = 0.2 ε = 0.6 ε = 1.0

final loss runtime loss runtime loss runtime

TR 0.516± 0.005 × 0.607± 0.007 99.6± 32.2 0.607± 0.005 90.8± 21.6
TR-B 0.517± 0.005 × 0.603± 0.005 32.6± 7.9 0.607± 0.003 33.4± 14.4

OPT 0.506± 0.001 × 0.535± 0.015 × 0.592± 0.003 1.8± 0.5
OPT-B 0.597± 0.003 1.3± 0.3 0.597± 0.003 1.3± 0.2 0.597± 0.003 1.4± 0.3
OPT-LS 0.525± 0.009 × 0.527± 0.009 × 0.549± 0.006 ×

2OPT 0.502± 0.001 × 0.513± 0.003 × 0.519± 0.003 ×
2OPT-B 0.597± 0.003 2.1± 0.4 0.597± 0.003 2.3± 0.5 0.597± 0.003 2.3± 0.6
2OPT-LS 0.577± 0.008 2.1± 1.0 0.591± 0.001 0.6± 0.1 0.591± 0.001 0.8± 0.2

Note: TR: SOTA DP-TR, ”-B”: mini-batching variant, ”OPT”: proposed

algorithm, ”2OPT”: algo + two-phase strategy, ”-LS”: line-search variant.

Our proposed algorithm runs much faster than the SOTA algorithm

DP-TR. Line search and mini-batching improve upon the short step

algorithm, especiallywhen combinedwith our two-phase strategy. 2OPT-

LS consistently performs well across different settings of parameters.

[1] Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, August 2014.

[2] Stephen J. Wright and Benjamin Recht. Optimization for Data Analysis. Cambridge University Press, Cambridge, 2022.

	References

