

Differentially Private Optimization for Smooth Nonconvex ERM

Summary

- We develop simple differentially private optimization algorithms that move along directions of (expected) descent to find an **approximate** second-order solution for nonconvex ERM.
- We use line search, mini-batching, and a two-phase strategy to improve the speed and practicality of the algorithm.
- Numerical experiments demonstrate the effectiveness of our approaches, **outperforming SOTA** algorithm DPTR.

Preliminaries

- Privacy protection has become a central issue in machine learning algorithms. *Differential privacy* provides a rigorous and popular framework for quantifying privacy.
- ((ε, δ) -Differential Privacy): A randomized algorithm \mathcal{A} is (ε, δ) differentially private (DP) if for all neighboring datasets D, D' and for all events S in the output space of \mathcal{A} , the following holds

$$\Pr\left(\mathcal{A}(D) \in S\right) \le e^{\varepsilon} \Pr\left(\mathcal{A}(D') \in S\right) + \delta.$$

There are other variants of DP. We also use ρ -zCDP in our paper.

• (ϵ_q, ϵ_H) -2S: A solution that satisfies approximate second-order solution

$$\|\nabla f(w)\| \le \epsilon_g, \quad \lambda_{\min}\left(\nabla^2 f(w)\right) \ge -\epsilon_H.$$
 (1)

- Gaussian Mechanism: We can achieve differential privacy by adding a Gaussian noise to the output.
- **Problem (DP-ERM):** Find a (ϵ_q, ϵ_H) -2S of the ERM in \mathcal{R}^d ,

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} l(w, x_i).$$
(2)

• We assume boundedness up to second order and Lipschitz Hessians.

Algorithm

We develop our based on a simple second-order algorithm [2]:

- When gradients are large, take a gradient step.
- When gradients are small, we check the Hessian. If there is a negative direction, we take a negative curvature step. Otherwise, we are done.

Changyu Gao and Stephen Wright

We add noise to gradients and Hessians to achieve differential privacy. However, the step sizes and noise parameters need to be chosen carefully to ensure privacy and convergence at the same time.	Two-phase strategy: Our choice of parameters is based on the worst-case analysis. We can try more aggressive parameters and fall back to conservative estimates if needed. Eigenvalue computation without forming the full Hessian: We can use the Lanczos method to find an approximation to the minimum							
Algorithm DP Optimization with Second-Order Guarantees								
Given: iteration min decrease MIN_DEC, tolerances ϵ_g , ϵ_H , noise parameters σ_f , σ_g , σ_H	eigenvai	ue and eiger	ivector, il	n place of a (urect eig	envalue con	iputation.	
Initialize w_0 and sample $z \sim \mathcal{N}(0, \Delta_f^2 \sigma_f^2)$ Compute an upper bound of the required number of iterations as follows			E	Experiments				
$T = \left[\frac{f(w_0) + z - f}{MIN_DEC}\right] \tag{3}$	Setting: Covertype dataset, logistic loss with nonconvex regularizer. We experiment under different levels of privacy budget measured by ε .							
Choose σ_g and σ_H using T for $k = 0, 1, \dots, T - 1$ do Sample $\varepsilon_L \sim \mathcal{N}(0, \Delta^2 \sigma^2 L)$ and compute the perturbed gradient $\tilde{a}_L = a_L + \varepsilon_L$	Covertype: finding a loose solution, $(\epsilon_g, \epsilon_H) = (0.060, 0.245)$							
if $\ \tilde{g}_k\ > \epsilon_q$ then		$\varepsilon = 0.2$		$\varepsilon = 0.6$		$\varepsilon = 1.0$		
Choose $\gamma_{k,g}$ and set $w_{k+1} \leftarrow w_k - \gamma_{k,g} \tilde{g}_k$ \triangleright Gradient step else	method	final loss	runtime	loss	runtime	loss	runtime	
Sample E_k such that E_k is a $d \times d$ symmetric matrix in which each entry on and above its diagonal is i.i.d. as $\mathcal{N}(0, \Delta_H^2 \sigma_H^2)$	TR TR-B	0.729 ± 0.028 0.729 ± 0.029	10.1 ± 9.9 2.2 ± 2.0	0.729 ± 0.026 0.728 ± 0.027	8.3 ± 8.6 2.2 ± 2.4	0.729 ± 0.026 0.729 ± 0.028	9.5 ± 9.1 2.5 ± 2.4	
Compute perturbed Hessian $H_k = H_k + E_k$ Compute the minimum eigenvalue of \tilde{H}_k and the corresponding eigenvector $(\tilde{\lambda}_k, \tilde{p}_k)$ satisfying $\ \tilde{p}_k\ = 1$ and $(\tilde{p}_k)^T \tilde{g}_k \leq 0$ if $\tilde{\lambda}_k < -\epsilon_H$ then	OPT OPT-B OPT-LS	0.581 ± 0.057 0.712 ± 0.018 0.577 ± 0.032	$ \begin{array}{c} \times \\ 3.1 \pm 2.9 \\ \times \end{array} $	0.712 ± 0.018 0.712 ± 0.018 0.687 ± 0.028	0.6 ± 0.2 3.2 ± 3.0 0.4 ± 0.1	0.712 ± 0.017 0.712 ± 0.018 0.699 ± 0.018	0.5 ± 0.2 2.9 ± 2.9 0.4 ± 0.1	
Choose $\gamma_{k,H} > 0$ and set $w_{k+1} \leftarrow w_k + \gamma_{k,H} \tilde{p}_k \triangleright \text{Negative curvature step}$ else return w_k	20PT 20PT-B 20PT-LS	0.626 ± 0.078 0.712 ± 0.018 0.699 ± 0.018	× 1.4 ± 0.3 0.5 ± 0.2	0.712 ± 0.017 0.712 ± 0.018 0.699 ± 0.018	0.6 ± 0.2 1.4 ± 0.4 0.5 ± 0.2	0.712 ± 0.018 0.712 ± 0.018 0.699 ± 0.018	0.6 ± 0.2 2.0 ± 1.7 0.5 ± 0.2	
end if end if end for		Covertype	: finding a	tight solution:	$(\epsilon_g, \epsilon_H) = ($	(0.030, 0.173)		

probability at least $\{(1-\zeta/T)(1-C\exp(-C_1Cd))\}^T$, the algorithm is ρ -zCDP, and outputs a $((1+c_1)\epsilon_g, (1+c)\epsilon_H)$ -2S, provided that $n \ge n_{\min}$, where the asymptotic dependence of n_{\min} on (ϵ_q, ϵ_H) , ρ and d, is

$$n_{\min} = \frac{\sqrt{d}}{\sqrt{\rho}} \tilde{O}\left(\max\left(\epsilon_g^{-2}, \epsilon_g^{-1} \epsilon_H^{-2}, \epsilon_H^{-7/2}\right)\right).$$
(4)

Line search and other enhancements

Line search: Instead of using "short steps", we can use line search to choose step sizes for a speedup. We use the sparse vector technique [1] to do this without spending too much privacy budget.

Mini-batching: We can carefully choose the parameters to derive a mini-batch version of the algorithm.

method	$\varepsilon = 0.2$		$\varepsilon = 0$).6	$\varepsilon = 1.0$		
	final loss	runtime	loss	runtime	loss	runtime	
TR TR-B	0.516 ± 0.005 0.517 ± 0.005	× ×	0.607 ± 0.007 0.603 ± 0.005	99.6 ± 32.2 32.6 ± 7.9	0.607 ± 0.005 0.607 ± 0.003	90.8 ± 21.6 33.4 ± 14.4	
OPT OPT-B OPT-LS	0.506 ± 0.001 0.597 ± 0.003 0.525 ± 0.009	$egin{array}{c} imes \ 1.3 \pm 0.3 \ imes \ i$	0.535 ± 0.015 0.597 ± 0.003 0.527 ± 0.009		0.592 ± 0.003 0.597 ± 0.003 0.549 ± 0.006	1.8 ± 0.5 1.4 ± 0.3 \times	
20PT 20PT-B 20PT-LS	0.502 ± 0.001 0.597 ± 0.003 0.577 ± 0.008	\times 2.1 ± 0.4 2.1 ± 1.0	0.513 ± 0.003 0.597 ± 0.003 0.591 ± 0.001	× 2.3 ± 0.5 0.6 ± 0.1	0.519 ± 0.003 0.597 ± 0.003 0.591 ± 0.001	× 2.3 ± 0.6 $\mathbf{0.8 \pm 0.2}$	

Note: TR: SOTA DP-TR, "-B": mini-batching variant, "OPT": proposed algorithm, "20PT": algo + two-phase strategy, "-LS": line-search variant.

Our **proposed algorithm runs much faster** than the SOTA algorithm DP-TR. Line search and mini-batching improve upon the short step algorithm, especially when combined with our two-phase strategy. **20PT-**LS consistently performs well across different settings of parameters.

^[1] Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, August 2014.

^[2] Stephen J. Wright and Benjamin Recht. Optimization for Data Analysis. Cambridge University Press, Cambridge, 2022.